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Abstract. The photoassociative spectroscopy of the Cs2 0−g long-range molecular state dissociating into
the 6s 2S1/2 + 6p 2P3/2 asymptote is performed, using cold cesium atoms in a vapor-cell magneto-optical
trap (MOT). Vibrational levels from v = 0 to v = 132 are identified, and their rotational structure is well
resolved up J = 8 for levels below v = 74. These data are analyzed in terms of the Rydberg-Klein-Rees
(RKR) procedure, and correspond to 99.6% of an effective potential curve with a minimum at 12.36±0.05 Å
and a 77.94±0.01 cm−1 depth. Both ab initio calculations and simple model estimations predict a double-
well structure for this potential curve, which cannot be reproduced presently by the RKR approach but
which is confirmed by the presence of giant structures in the spectrum. The 1u(6s 2S1/2 + 6p 2P3/2)
long-range state is also observed for the first time in Cs2.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 33.20.-t Molecular spectra – 34.20.-b Interatomic
and intermolecular potentials and forces, potential energy surfaces for collisions

1 Introduction

Determination of the long-range interactions between two
neutral atoms have long been the object of a substantial
effort [1]. During the past decade, developments in laser
cooling and trapping of atoms has opened the way to pho-
toassociative spectroscopy of alkali dimers [2], yielding ac-
curate determinations for the long range part of molecular
potential curves, in particular those correlated with the
ground s + s or the first excited s + p asymptotes. The
knowledge of these data is crucial in the interpretation of
many new physical phenomena associated with cold atom
dynamics, as for instance the prediction of the stability of
Bose-Einstein condensates [3–5] which depends upon the
ground state scattering lengths.

Molecular photoassociation (PA) of cold atoms has
been demonstrated for all alkali atoms [6,7], but only very
recently for the cesium atom [8]. Due to their very low rela-
tive kinetic energy (kBT ≤ 1 mK ' 21 MHz), two free cold
atoms can absorb a photon with a resonant wavelength, to
create an excited molecule in a well-defined rovibrational
state. As the Franck-Condon principle favors the excita-
tion of vibrational levels close to the dissociation limit, the
PA of cold atoms supplies a new high resolution method
complementary to the traditional bound-bound laser spec-
troscopy, which is in most cases devoted to lower levels.
The combination of both methods can lead to the com-
plete description of a potential curve, and to the deter-
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mination of dissociation energies [9] or atomic radiative
lifetimes [10–12] with an extremely high accuracy.

In a previous letter [8] we have reported on the first
observation of molecular PA of cold cesium atoms in a
vapor-cell magneto-optical trap. In this first experiment
we have observed 63 lines ranging 10 cm−1 below the
6s 2S1/2 + 6p 2P3/2 dissociation limit. Four accessible
Hund’s case (c) long-range attractive potential curves (1g,
0+
u , 0−g and 1u) are converging towards this limit, and

these lines have been attributed to rovibrational levels of
the 0−g state. The originality of the experiment was in the

detection of Cs+
2 molecular ions by photoionization of Cs2

triplet ground state molecules, produced by spontaneous
decay of the excited molecular state formed by photoasso-
ciation. Such molecules are indeed observed during their
fall outside the atomic trap, providing the first evidence
for the production of translationally cold molecules. The
ballistic expansion of the molecular cloud has allowed us
to determine a temperature of roughly 300 µK for the
molecular sample, close to the estimated temperature of
the initial atomic cloud (∼ 200 µK). The formation of cold
molecules in a photoassociative scheme (Fig. 1) is linked
to the particular shape of the 0−g potential curve, which
presents a Condon point at intermediate internuclear dis-
tances due to its double-well structure. This allows an effi-
cient stabilization of cold molecules through spontaneous
emission towards the lowest 3Σ+

u electronic state.

In this article, we report on the photoassociative spec-
troscopy of the 0−g long-range state over a 80 cm−1 en-

ergy range below the 6s 2S1/2 + 6p 2P3/2 dissociation
limit. This involves the measurement of the energies of
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Fig. 1. Optical transitions relevant for the present experiment.
(a) Photoassociation and spontaneous decay indicated for the
0−g → a3Σ+

u transition. (b) Resonant two-photon ionization of
the a3Σ+

u levels. All potential curves are built from ab initio
[55,56] and asymptotic [29,30] calculations.

the first 133 vibrational levels, with rotational structure
resolved up to v = 74. These energies are fitted in the
framework of the Rydberg-Klein-Rees (RKR) approach,
providing 99.6% of the energy depth of an effective po-
tential curve with a minimum at 12.36 ± 0.05 Å, and a
77.94± 0.01 cm−1 total depth. The RKR potential curve
is discussed and compared to asymptotic model estima-
tions and quantum chemistry computations, which predict
a double-well shape for this state. The 0−g long-range state
in Cs2 cannot be considered as a “pure long range state”,
as defined by Stwalley et al. [13], as the hump between the
two wells is influenced by short-range molecular forces.

The paper is organized in the following way: the exper-
imental approach is described in Section 2 and the mea-
surements of the energies of the detected 0−g ro-vibrational
levels are reported in Section 3. The basic principles of the
fitting procedure are recalled in Section 4, yielding the
best possible potential curve for representing the data.
The RKR potential curve is compared in Section 5 with
the potential curve computed by matching the asymptotic
long-range 0−g curve with the ab initio short range 0−g
curve. The origin of the double-well structure of the up-
per 0−g curve of the cesium dimer is also carefully discussed
using asymptotic expansion.

2 Experimental setup

The principle of the experiment has been described in
reference [8], and is recalled here for clarity. The cold
Cs atoms of a vapor cell magneto-optical trap (MOT)
are illuminated with a cw laser to produce photoas-
sociation. The experimental setup, already partly de-
scribed in reference [14], is schematized in Figure 2. The
cold atoms are produced in a vapor loaded MOT [15],
at the intersection of three pairs of mutually orthogo-
nal, counter-propagating σ+−σ− laser beams of intensity
nearly 2 mW/cm2 (to be compared with the saturation
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Fig. 2. Scheme of the experimental setup. The optical and
laser setup for the MOT is not shown, as well as the two vertical
trapping laser beams.

intensity Is = 1.1 mW/cm2), at the zero magnetic field
point of a pair of anti-Helmholtz coils with a magnetic
field gradient of 15 Gauss/cm. The residual pressure is
2 × 10−9 torr. The cooling and trapping laser beams are
split from a slave diode laser (SDL 5422-H1, 150 mW,
single mode, λ ∼ 852 nm) injection locked to a master
diode laser. The master laser (SDL 5412-H1, 100 mW) is
frequency-narrowed by optical feedback from an extended,
grating ended, cavity. Locking the master laser frequency
to a saturated absorption line of a cesium vapor ensures
its long-term stabilization. The trapping laser frequency
is tuned about 13 MHz (' 2.5 natural linewidths) on the
red of the frequency ν4→5 of the 6s 2S1/2(F = 4) →
6p 2P3/2(F ′ = 5) atomic transition. A repumping laser
beam (SDL 5712-H1, 100 mW, λ ∼ 852 nm) of frequency
ν3→4 resonant with the 6s 2S1/2(F = 3)→ 6p 2P3/2(F ′ =
4) transition is superimposed with two of the beams of the
cooling laser, preventing atoms to be optically pumped in
the untrapped F = 3 hyperfine ground state. In these
conditions, the dimension (FWHM) of the cold sample
ranges between 400–600 µm, the number of atoms in the
trap ranges between 1−5 × 107, thus leading to a peak
density of the order of 1011 atoms/cm3. The estimated
temperature of the cold atomic sample is T ' 200 µK
[16].

In the first experiment [8], the cold Cs atoms were
continuously illuminated by the beam of a diode laser
(λ ∼ 852 nm, SDL 5712-H1, 100 mW) focused on a di-
ameter of 100 µm, yielding a disposable intensity for PA
in the MOT zone of 200 W/cm2. We were able to scan the
wavelength of the laser diode on a 10 cm−1 range without
mode jumps on the red-side of the trapping transition, by
slowly changing the diode temperature.

In the present study, the diode laser has been re-
placed by a Ti:sapphire laser (Coherent 899 ring laser)
pumped by an Argon ion laser, allowing larger detunings
of the PA laser frequency. The maximum available power
in the experiment zone is 600 mW, focused on a spot with
∼ 500 µm diameter. However, the power of the PA laser
has been gradually reduced for detunings smaller than
about 2 cm−1 from ν4→5 in order to avoid perturbations
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Fig. 3. Typical detection time sequence. The time origin is
chosen at the center of the high voltage accelerating pulse. The
Cs+

2 and Cs+ ion pulses arrival times are in a ratio of ∼
√

2.
This sequence has a repetition rate of 10 Hz.

of the MOT operation. The frequency scale is calibrated
using a Fabry-Perot interferometer (750 MHz free spectral
range), and the absorption lines of iodine [17] (see Fig. 2).
The PA laser spectral linewidth is 1 MHz and its frequency
can be continuously scanned on a 30 GHz range. The PA
laser excitation corresponds to the photoassociative reac-
tion (Fig. 1a):

Cs (6s 2S1/2, F = 4) + Cs (6s 2S1/2, F = 4) + hν1 →

Cs2 (0−g (6s 2S1/2 + 6p 2P3/2; v, J)). (2.1)

As we have already mentioned, the photoassociative exci-
tation of the Cs2 (0−g (6s 2S1/2 +6p 2P3/2; v, J)) state pro-
duces, by spontaneous emission, transitionally cold Cs2

molecules in their lowest triplet state a3Σ+
u . Evidence of

the photoassociative process is detected by ionization of
the cold molecules into Cs+

2 , using a pulsed dye laser (dye:
LDS 722; pulse duration 7 ns; pulse energy: 1 mJ) pumped
by the second harmonic of a Nd-YAG laser, running at
10 Hz repetition rate. The dye laser is tuned at the wave-
length λ2 ∼ 716 nm. The ionization process (Fig. 1b) is
a resonant two-step photoionization via the vibrational
levels of an electronic molecular state correlated to the
6s 2S1/2 + 5d 2D3/2,5/2 dissociation limit. The detection
temporal sequence is shown in Figure 3. At the trap posi-
tion, a pulsed high-voltage field (4.15 kV, 0.5 µs) is applied
by means of a pair of electric field grids spaced 15 mm
apart. The produced Cs+ and Cs+

2 ions are expelled out
of the interaction region in a 6 cm field-free zone con-
stituting a time-of-flight mass spectrometer separating in
time Cs+

2 ions (1.9 µs delay) from Cs+ ones (1.3 µs delay)
(Fig. 3). The ions are detected by a pair of micro-channel
plates and the Cs+

2 ion signal is recorded with a gated inte-
grator. The whole acquisition is controlled by a computer
running with the Labtech software.
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Fig. 4. Experimental spectrum of Cs+
2 ions as a function

of the PA laser frequency. Near the origin the PA laser de-
stroys the MOT. The two arrows, respectively at δexp = 0
and δexp = −0.375 cm−1, indicate the two molecular hyper-
fine dissociation limits 6s 2S1/2(F = 3) + 6p 2P3/2(F ′ = 4) and
6s 2S1/2(F = 4)+6p 2P3/2(F ′ = 5). The spectrum is the result
of over 200 single 30 GHz scans with slightly different experi-
mental conditions and noise level. Points separation is 15 MHz.
Data are renormalized to absolute ion counts. Levels of the 0−g
series are indicated by thick bars and those of the 1u series
with thin ones. Stars indicate the three “giant” lines. Counts
on the first “giant line” are out of scale.

3 Experimental spectrum

The Cs+
2 ion spectrum is recorded as a function of the PA

laser frequency, over a 80 cm−1 range (Fig. 4). The ori-
gin of the energy scale is fixed at the 6s 2S1/2(F = 4) →
6p 2P3/2(F ′ = 5) atomic transition, which corresponds to

an energy of 11 732.183 cm−1 [18] above the 6s 2S1/2(F =

4) + 6s 2S1/2(F = 4) asymptote. For detunings smaller

than 0.1 cm−1, the MOT is destroyed by the PA laser. The
position of 133 lines has been determined with a maximum
absolute uncertainty of ± 300 MHz, mainly due to the un-
certainties on the position of the iodine lines. They cover
a range of detunings from 0.4 cm−1 to −77.12 cm−1. The
absolute maximum uncertainty within the first 5 cm−1

is estimated to be better than ± 150 MHz due to the
calibration with the atomic Cs lines. Moreover the fre-
quency difference of two vibrational lines belonging to a
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Fig. 5. Details of the rotational structure of different 0−g levels.
The hyperfine structure becomes larger for higher values of v
while the rotational structure decreases.

same scan of the Ti:sapphire laser is determined with an
uncertainty smaller than ± 50 MHz. For detunings larger
than 8 cm−1 the rotational structure of the lines is re-
solved with a ± 7 MHz accuracy in the relative position
of each rotational component.

According to the RKR analysis of Section 4, the line
with the largest detuning (−77.119 cm−1) in Figure 4 has
been labeled (v = 0, J = 2). Moreover, we have looked
for ion signal at larger detunings up to 100 cm−1, finding
no evidence for further lines. Most of the lines are accom-
panied by a smaller one at 9.2 GHz to the blue (see for
instance the lines near v = 45 in Fig. 4), corresponding to
a PA process between one Cs (6s 2S1/2, F = 4) and one

Cs (6s 2S1/2, F = 3) atom. This indicates that nearly 5%
of colliding cold atoms undergoing photoassociation are in
the (F = 3) ground hyperfine level. This unusually large
fraction of (F = 3) atoms is not explained in a normal
MOT operation (with a strong and resonant repumping
laser) and is due to cooperative effects between the trap
laser and the PA laser [19].

For v > 80, the width of the resonances is nearly
600 MHz and it can be attributed essentially to the hy-
perfine structure of the 0−g state. The rotational structure,
enlarged for a few lines in Figure 5, is resolved up to J = 8
for most of the vibrational levels below v = 74 (Fig. 6).
Levels above v = 74 have been arbitrarily labeled by J = 2
in Figure 6, which is the most intense line in each resolved
rotational structure.

In the remaining part of the paper, we will concentrate
on the analysis of the energy position of these lines, in or-
der to provide an accurate description of the correspond-
ing molecular state. However, we mention below several
other features which are also visible in Figure 4.

1. The modulation in the intensities of the lines, already
mentioned in [8], is even better manifested over the
larger range of detunings investigated here. As dis-
cussed for example in references [2,20–22], it is due
to the variation of the Franck-Condon factors for the
PA transitions between the initial state of two cold
free atoms and the final ro-vibrational levels of the
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Fig. 6. The (v, J) data set of the observed PA spectrum. Levels
used in the fit “F2” are shown with crosses.

0−g state. According to preliminary calculations, the
spontaneous decay step and the ionization step do not
affect the modulation of the Cs+

2 signal. These data
should be considered for the determination of the Cs
scattering lengths, which is still an open problem [23,
24]. Our previous analysis [8] gave an absolute value
larger than 260a0, without determining its sign.

2. In contrast with similar photoassociation experiments
[25,26], J values larger than the highest partial wave
allowed by the trap temperature (at 200 µK, only s, p
and d waves can penetrate into the molecular region)
are observed. This is also due to cooperative effects of
trap lasers and PA laser, which provide an enhanced
flux at short distances of colliding pairs with higher
relative orbital angular momenta [19]. This important
point is addressed elsewhere [27].

3. Compared to the spectrum observed in our previous
study [8], new structures have now emerged in the
range of 3–7 cm−1 due to the larger intensity avail-
able for PA with the Ti:sapphire laser. We assign these
structures to levels of the long-range 1u (6s 2S1/2 +

6p 2P3/2) state (drawn in Fig. 1), observed up to now
only in a K2 PA experiment [28]. Asymptotic calcula-
tions using parameters from references [29,30] predict
for this state a ' 7 cm−1 well depth, a ' 6 GHz width
for the hyperfine structure, and a level spacing which
are compatible with the present observations. As for
the 0−g long-range state, the potential curve of the 1u
state is also exhibiting a Condon point at intermedi-
ate distance (around 25a0), such that translationally
cold Cs2 molecules are likely produced in their singlet
ground state by spontaneous emission.

4. Three “giant” structures are clearly visible in
Figure 4. The first one, already observed in our previ-
ous work [8], is located on the top of the 0−g (v = 103)

level, at a detuning of 2.140 cm−1 (for the J = 3 com-
ponent), and has a large rotational constant of about
140 MHz. The second structure occurs in place of the
0−g (v = 79) level, at a detuning of 6.153 cm−1 (for
the J = 3 component), with a rotational constant of
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' 190 MHz). A preliminary estimation using ab initio
potentials defined in Section 5.2 suggest that it could
be attributed to vibrational levels of the inner well
of the 0−g potential, populated by tunneling through
the barrier, and also possibly perturbed by the up-
per 3Σ+

g (0−g ) state correlated to 6s 2S1/2 + 5d 2D3/2

(see Fig. 1b). The third structure at a detuning of
6.430 cm−1 has no resolved rotational structure. We
shall exclude these data from the {E(v, J)} set of mea-
sured energies analyzed in the next section, attributed
to levels lying in the 0−g external well.

4 Data representation and fitted potential
energy curve

The quality of data representation can be judged by the
four criteria put in evidence by Tromp and Le Roy [31]:
accuracy, physics, compactness and extrapolation ability.
The problem is to construct an accurate potential curve
giving a compact physical representation of the observed
rovibrational E(v, J) energy values. A usual approach
is the Rydberg-Klein-Rees (RKR) method, which deter-
mines the inner (R−) and outer (R+) turning points of the
classical vibrational motion for each level v from rotation-
less energies G(v) and inertial rotational constants B(v).
The most commonly used procedures to extract G(v) and
B(v) from the {E(v, J)} set are the Dunham expansion
and the near-dissociation (NDE) expansion, which are
briefly recalled below. The former one describes accurately
the system around its equilibrium internuclear distance,
but does not yield a correct asymptotic behaviour. The
latter extrapolates the representation towards the dissoci-
ation limit with good accuracy. In the set of experimental
data for the {(v, J)} energy levels (Fig. 6), a systematic
energy shift due to temperature effects is expected [32],
which can reach ∼ 100 MHz at 2 mK for the highest
(J = 8) rotational level, but is negligible at the present
level of accuracy for J < 5. This effect corresponds to
the limit of the experimental resolution. Therefore the fol-
lowing analysis will be restricted to J ≤ 5, but we have
checked that the quality of the results is not significantly
modified when including the highest J levels.

4.1 Dunham procedure

In the initial work of Dunham [33] the energies E(v, J) be-
longing to a single electronic state of a diatomic molecule
may be written as the following expansion, so-called
“Dunham-type”:

E(v, J) =
∞∑
l=0

∞∑
m=0

Ylm(v + 1/2)l[J(J + 1)]m. (4.1)

The Ylm terms are known as the Dunham coefficients.
Equation (4.1) can be recasted into:

E(v, J) =
∞∑
m=0

Km(v)[J(J + 1)]m (4.2)

Table 1. Primary (Dunham-type) molecular parameters Ylm
of the 0−g state of Cs2 (Number of observed rovibrational transi-
tions: 484 (0 ≤ J ≤ 5); r.m.s. of the deviations: 0.0015 cm−1).
All quantities are in cm−1 except Re (in Å). One standard
deviation is quoted in parentheses for each parameter. Re is
calculated from Be = Y01 = h/(8π2cµR2

e).

Y10 1.785 567 4 (0.000 060)

Y20 × 10 −0.138 539 4 (0.000 051)

Y30 × 104 0.266 206 0 (0.001 3)

Y50 × 108 0.373 689 8 (0.005 2)

Y60 × 1010 −0.490 602 9 (0.008 8)

Y70 × 1012 0.257 264 5 (0.005 8)

Y80 × 1015 −0.518 871 5 (0.001 4)

Y01 × 102 0.166 726 7 (0.001 4)

Y11 × 104 −0.157 617 6 (0.003 6)

Re 12.357 8 Å (0.051 9)

with

Km(v) =
∞∑
l=0

Ylm(v + 1/2)l. (4.3)

In this expansion, the m = 0 term K0(v) is identified as
the rotationless vibrational energy G(v), and the m = 1
term K1(v) as the inertial rotational constant B(v). The
following constants with m = 2, 3, . . . , K2(v) ≡ −D(v),
K3(v) ≡ H(v), . . . are the centrifugal distortion con-
stants. The first Dunham coefficients Y10 ≡ ωe and
Y01 ≡ Be are easily interpreted respectively as the har-
monic and rotational constant at equilibrium. The equi-
librium distance Re is extracted through the relation
Be = h/(8π2cµR2

e), where µ is the reduced mass of the
system (µ=121 135.828 a.u. for 133Cs2 [34]).

The initial data set for the Dunham procedure are
the wavenumbers of the quasi-resonant transitions con-
necting the initial continuum state of the two cold atoms
and the rovibrational levels in the 0−g (v, J) presently stud-
ied. Energies may then be referred to the lowest (v =
0, J = 0) level by subtracting the corresponding tran-
sition wavenumber. A Dunham fit, according to equa-
tion (4.1) of the experimental data set represented in
Figure 6 gives the Dunham coefficients quoted in Table 1.
With these coefficients the initial experimental data set
{E(v, J)} are reproduced to within 0.0015 cm−1. Due
to the low values of the observed J numbers, the con-
tribution to energy of the higher order distortion pa-
rameters is found negligible. The equilibrium internu-
clear distance Re = 12.36 ± 0.05 Å ≡ 23.36 ± 0.10a0

(a0 = 0.529 177 2 Å), is slightly shorter than previous pre-
diction (Re = 24.56a0, [30]) based on asymptotic calcula-
tions. We will further discuss this point in Section 5.

The last spectral line included has a detuning of about
0.4 cm−1. The Dunham representation offers only a poor
extrapolation of the energy terms towards the dissocia-
tion limit, which can be improved by Near-Dissociation
Expansion theory described below.
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4.2 The near-dissociation expansion theory

The analysis of PA data near the dissociation energy aims
at providing the long-range behaviour of the potential
curve, which writes for R→∞:

V (R) = D − Cn/R
n (4.4)

where D is the energy at the molecular dissociation limit
and Cn the leading long-range coefficient (n = 3 for
dipole-dipole interaction in the present case). Depending
upon the choice for the energy origin, D can be either zero
(origin at the dissociation limit) or the value of the well
depth De (origin at the minimum of the studied potential
well). From equation (4.4), LeRoy and Bernstein [35] and
Stwalley [36,37] (see also Ref. [38]) derived the near disso-
ciation limiting behavior K∞m (v) of the quantities Km(v)
in equation (4.3). For the vibrational terms (m = 0):

G∞(v) ≡ K∞0 (v) = De −X0(n)(vD − v)2n/(n−2) (4.5)

and for the rotational constant (m = 1):

B∞(v) ≡ K∞1 (v) = X1(n)(vD − v)[2n/(n−2)−2]. (4.6)

More generally, if m > 0, the distortion terms are written:

K∞m (v) = Xm(n)(vD − v)[2n/(n−2)−2m]. (4.7)

In the above equations, vD is the effective vibrational
(non-integer) index at the dissociation energy and,

Xm(n) = X̄m(n)/
[
µn(C2

n)
]1/(n−2)

(4.8)

where the quantities X̄m(n) are known tabulated con-
stants1 [39]. In the particular case of the Cs2 0−g state

dissociating into the limit Cs (6s 2S1/2)+Cs (6p 2P3/2),
we have (setting n = 3):

Xm(3) = X̄m(3)/µ3C2
3 . (4.9)

However, equations (4.4) and following are valid only for
very large internuclear distances (or for levels very close
to the dissociation limit), and when hyperfine structure
and retardation effects are neglected. Moreover, further
R−n terms beyond the dipole-dipole approximation in the
expansion (4.4) are required to reproduce larger parts of
PA spectra [40]. Such detailed long-range analysis of PA
data have been recently performed for the 0−g state in Na2

[11] and K2 [12], yielding an accurate value of the leading
coefficient C3 in equation (4.4), directly related to the life-
time of the first P3/2 atomic level. In the present case this
cannot easily be done as, in contrast with lighter alkali
dimers, the 0−g state in Cs2 is no longer a pure long-range
molecular state (see Sect. 5), and the hyperfine structure
is much larger.

1 In the computer program we have used the values X̄0(3) =
36 409.62 and X̄1(3) = 60 221.029 when energies are in cm−1,
distances in Å and mass in a.m.u.

Instead, we follow the procedure which has been suc-
cessfully used for the Rb2 0−g state [41]. The near disso-
ciation analysis is combined with the Dunham approach
within the Near-Dissociation Expansion (NDE) theory de-
veloped by Beckel and co-workers [42,43] and LeRoy and
co-workers [44,45], in order to provide a description of the
entire spectra. As the Dunham type expansion does not
have the correct limiting behavior and cannot be reliably
applied to vibrational levels close to the dissociation limit,
the near-dissociation expansion (NDE) expressions ensure
the correct Km(v) behavior both for near equilibrium and
for near dissociation spectral data by correcting the vibra-
tional energy at infinity with a Padé approximant [L/M ]:

G(v) ≡ K0(v) = K∞0 (v)[L/M ]

= De −X0(n)(vD − v)2n/(n−2)[L/M ] (4.10)

where [L/M ], termed “outer” Padé expression, represent
the ratio of two polynomials PL and QM depending upon
the variable z = (vD − v)γ :

PL = 1 +
L∑
i=1

piz
α+i−1

QM = 1 +
M∑
j=1

qjz
β+j−1. (4.11)

Several fits have been performed to determine the value
of the exponents α, β, γ, L and M , and we choose the one
which ensures the best compromise between the accuracy
and the compactness of the representation of the {E(v, J)}
set.

The other molecular parameters (with m > 0) are usu-
ally corrected by an exponential expansion of order N :

Km(v) = K∞m (v) exp

[
N∑
l=1

sl(vD − v)l

]
. (4.12)

Even though the parameters of such expansions have
no direct physical meaning, these analytical continua-
tions (Eqs. (4.10, 4.12)) of long-range representations
(Eqs. (4.5–4.7)) have been shown [38,44,45] to be far bet-
ter for extrapolation towards high v values than simple
Dunham-type expressions (Eqs. (4.2, 4.3)).

Another type of analytical long-range analysis is possi-
ble as for example in the accurate study of the long-range
0+
u potential in Li2 by Martin et al. [40]. The authors use

higher order terms in the multipolar expansion of the po-
tential (Eq. (4.4)), in order to extract the corresponding
long-range parameters Cn and the asymptotic form of the
exchange energy. Our present study is concentrated onto
the representation of the part of the potential curve cov-
ered by all the observed lines, by mixing in equation (4.10)
the long-range behavior of the potential (a single Cn coef-
ficient) and additional parameters (in the [L/M ] expres-
sion).

The NDE analysis implies non-linear fits and does not
have a unique solution. Here the input are the G(v) and
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Table 2. Parameters in the NDE fits of theG(v) energy values.
The nature [L/M ] of the outer Padé expressions is indicated for
all fits, and coefficients given for fit F2 as an example. The dis-
sociation limit De is evaluated from the bottom of the potential
energy curve. The second order correction Y00 = −0.0004 cm−1

has been included in De. The displayed value of C3 is fixed in
the F2 fit to the theoretical value deduced from [30]. In the fit
F3, the De value is fixed to the value of the F2 fit.

F1 vD 218.555(195)

[7/0] De 77.957(3)

C3 11.616(50) a.u. ≡ 377 804 cm−1Å3

F2 vD 214.639(130)

De 77.928(4)

C3 10.47 a.u. ≡ 340 513 cm−1Å3

[2/2] p1 × 105 −1.147 468 293

p2 × 108 3.525 611 548

q1 × 105 −1.761 471 370

q2 × 108 7.285 783 887

X0(3)× 1011 0.107 007 8979 cm−1

F3 vD 213.685(535)

De 77.94

C3 9.84(10) a.u. ≡ 320 122(3000) cm−1Å3

[1/0] p1 × 106 1.1(1)

Table 3. Parameters in the exponential NDE fit of theB(v) ro-
tational constants. The parameters C3 and vD are constrained
to the values given in Table 2 for the fit “F2”.

s1 − 0.418 073 790

s2 × 10 0.107 456 229

s3 × 103 − 0.110 050 347

s4 × 106 0.567 155 470

s5 × 108 − 0.145 733 391

s6 × 1011 0.150 049 475

X1(3) × 1011 0.176 987 8010

B(v) values resulting from the Dunham procedure. The
full NDE analysis, summarized in Table 2 was conducted
as follows.

1. A first fit “F1” of all the energies G(v) is performed
[46], requiring quite high values of the exponents:
α = 2, β = 2, γ = 6, with a [7/0] “outer” Padé
expression. Equation (4.10) has not a very compact
form in this case. The converged long-range parame-
ters are then: vD = 218.5(2), De = 77.957(3) cm−1

and C3 = 11.61(5) a.u. (or 377(2)×103 cm−1Å3). The
entire set of observed E(v, J) values is then repre-
sented with a standard deviation of 0.002 cm−1. The
long range parameter vD predicts more than 210 lev-
els in the well, and the well depth is found slightly
larger than the value De = 75.55 cm−1 deduced from

the asymptotic calculations of reference [30]. More-
over, the fitted parameter C3 also differs noticeably
from the value deduced from the same work (C3 =
10.47 a.u. [30]), or from the one derived from precise
atomic lifetime measurements (C3 = 10.1 a.u. [47]).
These discrepancies will be discussed in more details
in Section 5. It is worthwhile to remark that a similar
NDE analysis has been performed recently [41] for the
0−g (5s 2S1/2 + 5p 2P3/2) of Rb2, yielding a fitted C3

parameter in good agreement with the value obtained
by asymptotic calculations.

2. Next, a further fit “F2” of the energies G(v) is per-
formed with the constraint C3 = 10.47 a.u.: a more
compact expression is obtained, with α = 2, β = 2,
γ = 1, and a [2/2] “outer” Padé expression. The stan-
dard deviation on E(v, J) values remains of the order
of the experimental uncertainties (0.0031 cm−1). The
well depth and the limiting vibrational quantum num-
ber are only slightly modified.

3. According to our asymptotic calculations of the hyper-
fine structure, the R−3 long-range behaviour of the 0−g
state is expected to be strongly perturbed by the hy-
perfine structure, for detunings smaller than 3 cm−1.
Then in a third fit “F3”, the set of G(v) data is lim-
ited to 70 ≤ v ≤ 100, i.e. to a range where the R−3

behaviour is expected to be correct (the contributions
of higher order terms are indeed negligible). The pa-
rameterDe in equation (4.10) is held to the value given
by the F2 fit. As seen in Table 2, the [1/0] resulting
Padé expression, with α = 2, β = 2, γ = 1, is even
more compact than from the “F2” fit: a single pa-
rameter is required, which modifies only slightly the
Leroy-Bernstein law of equation (4.5). But the fitted
value of the parameter C3 = 9.84(10) a.u. is now 3%
smaller than the one derived from atomic lifetime mea-
surement, and 6% smaller than the theoretical value
C3 = 10.47 a.u. of reference [29].
We can see that the G(v) are well extrapolated towards
the dissociation limit by the NDE procedure, as the
potential depth and the fractional vibrational quantum
numbers are very close over all the performed fits, and
the standard deviation remains small. However, there
is no fully satisfying solution for the extraction of the
long-range parameter C3 of the 0−g state. This is due
to the combined effect of the large hyperfine structure,
and of the particular short-range shape of the potential
curve, as demonstrated in Section 5.

4. In the fit of the rotational constants B(v), the vD, De

parameters are constrained to the values obtained in
the F2 fit (with C3 = 10.47 a.u.), choosing N = 6.
It is worth to notice that the experimentally observed
rotational structures are not resolved beyond v = 74.
So we benefit of the powerful features of the NDE al-
gorithm in extrapolating unobserved B(v) values for
75 < v ≤ 132 according to equation (4.12). The final
converged parameters are listed in Table 3, reproduc-
ing the observed rotational structure accurately, the
largest discrepancy being of about 0.1% for the v = 74
level.
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4.3 The Rydberg-Klein-Rees method
for potential determination

The classical turning points R−(v) and R+(v) are deter-
mined from the Klein integrals:

R+(v)−R−(v) =
2~
√

2µ

∫ v

vmin

dv′

[G(v)−G(v′)]1/2

1

R−(v)
−

1

R+(v)
=

~
2π
√

2µ

∫ v

vmin

B(v′)dv′

[G(v) −G(v′)]1/2

(4.13)

where R−(v) and R+(v) are the inner and outer turning
points for a classical motion with energy G(v), and with
rotational constant B(v). The lower bound vmin is the ex-
trapolated value of the (non-integer) vibrational quantum
number at the potential minimum (equal to −0.5000(2)
here).

The NDE algorithm offers a physically more reliable
representation of the G(v) and B(v) quantities, especially
near the dissociation limit, because equations (4.5–4.7)
have explicitly the near-limit behavior in the long-range
region. The final G(v) and B(v) sets, derived from the pa-
rameters of the fit “F2” (see Tabs. 2, 3), are taken as the
input for the RKR calculations [48]. It is worth to notice
that, as very low J values levels are observed, the iter-
ative procedure used by Ji et al. [38] to take account of
the influence of higher order rotational distortion param-
eters D(v), H(v), . . . is not necessary since their energy
contribution is completely negligible in the present case.
An inner wall “wiggling” due to the increasing spacing
between successive R+(v) for the highest vibrational lev-
els occurs starting from v = 60 (inner turning point at
R− = 8.908 Å). Therefore, as suggested by LeRoy, the
inner part of the potential curve is corrected for lower R.
In the present case, for all levels above v = 50, the po-
sition of the inner turning points are smoothed assuming
an exponential variation of the repulsive inner potential
wall:

V (R−)(cm−1) = −2.9842

+ 0.1497098× 105 exp[−0.6084714R−(Å)] (4.14)

builded from R−(48), R−(49), R−(50) data points. Such
an extrapolation ensures a proper representation of the
measured Bv between v = 50 and v = 74.

The RKR turning points up to the last observed vibra-
tional level v = 132 are listed in Table 4. The final RKR
potential energy curve is plotted in Figure 7. The inset
shows that the fit “F1” tends to provide an inner wall
slightly steeper than from the fit “F2”, while no visible
change is obtained in the asymptotic region.

The quality of this potential is finally checked by solv-
ing the radial Schrödinger equation and computing the
eigenvalues and distortion constants [49]. The difference
with the experimentally observed term values are lower
than 0.010 cm−1 up to v = 74. The rotational constant
B(v) is recalculated within an accuracy better than 0.1%.
The positions of the lines in the spectra in terms of red

Table 4. The output inner and outer turning points of the
RKR analysis using parameters of the fit “F2” in Table 2.
The origin of energies is taken at the bottom of the well. The
experimental detuning δexp(v) can be deduced according to the
formula: δexp(v) = δexp(0) + (G(v) − G(0)), where δexp(0) =
−77.129 cm−1 is the measured detuning of the (v = 0, J = 0)
level. Beyond v = 74 (horizontal line), no rotational structure
is resolved.

v G(v) (cm−1) B(v) (cm−1) R−(v) (Å) R+(v) (Å)

0 0.890 0.00166 11.830 12.899

1 2.649 0.00164 11.496 13.360

2 4.380 0.00163 11.281 13.703

3 6.085 0.00161 11.114 13.999

4 7.761 0.00160 10.975 14.269

5 9.411 0.00158 10.856 14.522

6 11.033 0.00156 10.749 14.762

7 12.629 0.00155 10.654 14.994

8 14.198 0.00153 10.567 15.220

9 15.741 0.00152 10.486 15.440

10 17.258 0.00150 10.412 15.657

11 18.748 0.00149 10.342 15.871

12 20.213 0.00147 10.276 16.082

13 21.652 0.00145 10.215 16.293

14 23.065 0.00144 10.156 16.502

15 24.454 0.00142 10.101 16.710

16 25.817 0.00141 10.048 16.918

17 27.156 0.00139 9.998 17.127

18 28.469 0.00138 9.950 17.335

19 29.759 0.00136 9.903 17.544

20 31.024 0.00134 9.859 17.754

21 32.265 0.00133 9.816 17.965

22 33.483 0.00131 9.775 18.178

23 34.677 0.00130 9.736 18.391

24 35.847 0.00128 9.698 18.606

25 36.995 0.00127 9.661 18.823

26 38.119 0.00125 9.625 19.042

27 39.221 0.00123 9.590 19.262

28 40.301 0.00122 9.557 19.485

29 41.358 0.00120 9.525 19.710

30 42.394 0.00119 9.493 19.938

31 43.408 0.00117 9.462 20.168

32 44.400 0.00115 9.433 20.401

33 45.371 0.00114 9.404 20.637

34 46.321 0.00112 9.376 20.875

35 47.251 0.00111 9.348 21.117

36 48.160 0.00109 9.322 21.362

37 49.049 0.00108 9.296 21.610

38 49.917 0.00106 9.271 21.862

39 50.767 0.00104 9.247 22.117

40 51.596 0.00103 9.223 22.376
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Table 4. continued.

v G(v) (cm−1) B(v) (cm−1) R−(v) (Å) R+(v) (Å)

41 52.407 0.00101 9.200 22.639

42 53.198 0.00100 9.177 22.906

43 53.971 0.00098 9.156 23.177

44 54.726 0.00097 9.134 23.452

45 55.462 0.00095 9.114 23.732

46 56.181 0.00093 9.094 24.017

47 56.882 0.00092 9.075 24.306

48 57.565 0.00090 9.056 24.600

49 58.232 0.00089 9.038 24.899

50 58.881 0.00087 9.021 25.203

51 59.515 0.00086 9.004 25.513

52 60.131 0.00084 8.988 25.829

53 60.732 0.00082 8.972 26.150

54 61.317 0.00081 8.957 26.476

55 61.887 0.00079 8.943 26.809

56 62.441 0.00078 8.929 27.148

57 62.980 0.00076 8.915 27.493

58 63.505 0.00075 8.902 27.845

59 64.015 0.00073 8.890 28.203

60 64.511 0.00071 8.878 28.568

61 64.993 0.00070 8.866 28.941

62 65.462 0.00068 8.855 29.320

63 65.917 0.00067 8.844 29.707

64 66.359 0.00065 8.833 30.101

65 66.788 0.00063 8.823 30.503

66 67.204 0.00062 8.813 30.913

67 67.608 0.00060 8.804 31.332

68 68.000 0.00059 8.795 31.759

69 68.380 0.00057 8.786 32.195

70 68.749 0.00056 8.778 32.639

71 69.106 0.00054 8.769 33.093

72 69.452 0.00052 8.762 33.557

73 69.787 0.00051 8.754 34.030

74 70.112 0.00049 8.747 34.513

75 70.426 0.00048 8.740 35.006

76 70.730 0.00046 8.733 35.511

77 71.024 0.00045 8.726 36.026

78 71.309 0.00043 8.720 36.552

79 71.583 0.00042 8.714 37.091

80 71.849 0.00040 8.708 37.641

81 72.106 0.00039 8.702 38.203

82 72.354 0.00037 8.697 38.779

83 72.593 0.00036 8.692 39.367

84 72.824 0.00035 8.687 39.969

85 73.047 0.00033 8.682 40.585

86 73.262 0.00032 8.677 41.215

Table 4. continued.

v G(v) (cm−1) B(v) (cm−1) R−(v) (Å) R+(v) (Å)

87 73.469 0.00030 8.673 41.860

88 73.669 0.00029 8.669 42.521

89 73.862 0.00028 8.664 43.197

90 74.047 0.00027 8.660 43.890

91 74.225 0.00025 8.657 44.600

92 74.397 0.00024 8.653 45.327

93 74.562 0.00023 8.650 46.072

94 74.721 0.00022 8.646 46.835

95 74.874 0.00021 8.643 47.618

96 75.021 0.00019 8.640 48.421

97 75.162 0.00018 8.637 49.244

98 75.297 0.00017 8.634 50.089

99 75.427 0.00016 8.631 50.956

100 75.552 0.00015 8.629 51.845

101 75.671 0.00014 8.626 52.759

102 75.786 0.00014 8.624 53.696

103 75.895 0.00013 8.622 54.659

104 76.000 0.00012 8.619 55.649

105 76.101 0.00011 8.617 56.665

106 76.197 0.00010 8.615 57.710

107 76.289 0.00010 8.613 58.784

108 76.377 0.00009 8.612 59.889

109 76.461 0.00008 8.610 61.025

110 76.542 0.00008 8.608 62.194

111 76.618 0.00007 8.607 63.396

112 76.692 0.00007 8.605 64.635

113 76.761 0.00006 8.604 65.910

114 76.828 0.00006 8.602 67.224

115 76.891 0.00005 8.601 68.577

116 76.951 0.00005 8.600 69.972

117 77.009 0.00004 8.598 71.410

118 77.063 0.00004 8.597 72.892

119 77.115 0.00004 8.596 74.422

120 77.164 0.00003 8.595 76.001

121 77.211 0.00003 8.594 77.630

122 77.256 0.00003 8.593 79.313

123 77.298 0.00002 8.593 81.051

124 77.338 0.00002 8.592 82.847

125 77.375 0.00002 8.591 84.704

126 77.411 0.00002 8.590 86.624

127 77.445 0.00002 8.590 88.610

128 77.477 0.00001 8.589 90.666

129 77.507 0.00001 8.588 92.794

130 77.536 0.00001 8.588 94.998

131 77.562 0.00001 8.587 97.282

132 77.588 0.00001 8.587 99.650
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Fig. 7. The Cs2 0−g potential curve. Crosses: the RKR poten-
tial energy curve determined from the 133 vibrational and 75
rotational observed spectral data, with the fit “F2”. Full line:
theoretical potential described in Section 5. Inset: blow-up of
the short-range part of the curves, including also the RKR
determination from the fit “F1” (open circles).

detuning from the 2S1/2(F = 4)→ 2P3/2(F ′ = 5) transi-

tion (11 732.183 cm−1) can be determined from Table 4,
considering for instance the measured detuning of the
(v = 0;J = 0) level (−77.129 cm−1). The dissociation
limit of the RKR curve is lying 0.089(3) cm−1 below the
2S1/2(F = 4) +2 P3/2(F ′ = 5) dissociation limit. This is
not surprising, as no data concerning hyperfine structure,
which dominates the spectrum for small detunings, are
included in the RKR analysis.

5 Discussion; double-well structure
and comparison with quantum chemistry
determination of the 0�g potential curve

The previous model relies upon the fact that the observed
series is belonging to a single isolated potential curve, un-
perturbed by other neighbouring electronic states. It is
therefore valuable to compare the potential derived from
experimental data with other theoretical models. In this
section, we recall how asymptotic models explain the ori-
gin of the long-range wells in the 0−g (ns2S1/2 + np2P3/2)
state in alkali dimers, and their evolution from light
to heavy systems. We show that this model establishes
clearly the existence of a double well shape of this curve
for Cs2. Quantum chemistry computations confirm this
pattern, and their results are carefully compared to the
RKR determination.

5.1 Asymptotic model: the particular behaviour of Cs2

Since the pioneering work of Dashevskaya et al. [50], the
shape of the long range adiabatic potential curves of the

alkali dimers correlated to the first ns 2S1/2 +np 2P1/2,3/2

asymptotes has been discussed in many papers [30,51–
53]. From [50], it is clear that the sign and magnitude of
the long range R−3 dipole-dipole interaction depend upon
the orientation of the two atomic dipoles relative to the
internuclear axis and relative to each other. The relevant
symmetry property, for the asymptotic Hund’s case (a)
molecular wavefunction obtained by antisymetrized com-
bination of the two unperturbed atomic wavefunctions, is
the exchange of excitation between the two atoms, leaving
the core and electrons unchanged. It can be expressed as
the product of the symmetry in exchange of the two elec-
trons multiplied by the symmetry in exchange of the two
cores

π = (−1)Sw (5.1)

where S is the (integer) electronic spin of the system, and
w = ± 1 for g and u symmetry respectively.

Once the fine structure is introduced in a perturba-
tive treatment, the 0−g curves arise as a mixture of two
antisymmetric states (π = −1), for each of which the two
atomic dipoles are oriented in the same direction.

1. A 3Σ+
g state for which both dipoles are parallel to the

molecular axis (→→) resulting into a potential VΣ(R)
attractive in the asymptotic region (R→∞):

VΣ(R) = −2
C3

R3
−
CΣ6
R6
−
CΣ8
R8

+ · · · (5.2)

2. A 3Πg state for which both dipoles are perpendicular
to the internuclear axis (↑↑), leading to a potential
curve VΠ(R)) repulsive in the asymptotic region (R→
∞):

VΠ(R) =
C3

R3
−
CΠ6
R6
−
CΠ8
R8

+ · · · (5.3)

In both cases the C3 constant is simply related to the
atomic dipole transition moment, and hence to the lifetime
of the np atomic state by C3 = (e2/4πε0)|〈ns|z|np〉|2.

The existence of the well in the adiabatic 0−g (np 2P3/2)

potential curve dissociating into (ns 2S1/2 + np 2P3/2) is

linked to an avoided crossing with the flat 0−g (np 2P1/2)

curve correlated to the (ns 2S1/2 + np 2P1/2) dissociation
limit. It is easy to estimate the position of this minimum
in the framework of asymptotic calculations. A convenient
choice consists in writing the effective spin-orbit Hamilto-
nian in the Hund’s case (c) representation for the asymp-
totic molecular wavefunction, in which the atomic fine
structure term, depending upon the fine structure con-
stant A, is diagonal:

Hso(R) =
A

2
+

2

3
VΣ(R) +

1

3
VΠ(R)

√
2

3
(VΣ(R)− VΠ(R))

√
2

3
(VΣ(R)− VΠ(R)) −A+

1

3
VΣ(R) +

2

3
VΠ(R)

 .

(5.4)
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The upper diagonal element is attractive at large distances
while the lower diagonal element corresponds to a flat
curve. The R-dependent coupling is due to the difference
between the two (Hund’s case (a)) potentials VΣ(R) and
VΠ(R):

Hso
12(R) =

√
2

3
(VΣ(R)− VΠ(R))

= −
√

2
C3

R3
−

√
2

3

CΠ6 − C
Σ
6

R6
−

√
2

3

CΠ8 − C
Σ
8

R8
+ · · ·

(5.5)

In a model considering only the leading R−3 dipole dipole
interaction and hence neglecting the R−6 and R−8 terms,
the energy of the 0−g (ns 2S1/2 + np 2P3/2) curve is read-
ily obtained after diagonalization the matrix in equa-
tion (5.4):

V (0−g (np 2P3/2)) = E(np 2P3/2)−
C3

R3

+
1

2
x

[√
1 +

8

x2

(C3)2

R6
− 1

]
(5.6)

where E∞(np 2P3/2) is the energy of the (ns 2S1/2 +

np 2P3/2) dissociation limit and x = ∆Efs − C3/R
3 =

3A/2 − C3/R
3 is the difference between the atomic fine

structure splitting ∆Efs = 3A/2 and the dipole-dipole
attractive interaction.

At large internuclear distances where the fine structure
splitting is much larger than the dipole-dipole interaction
(x ' ∆Efs), the upper curve is attractive:

V (0−g (np 2P3/2)) ' E∞(np 2P3/2)−
C3

R3
+

2(C3)2

∆EfsR6
·

(5.7)

The R−6 correction is always comparable to the terms ne-
glected in multipole expansion (Eqs. (5.2, 5.3)). As the
internuclear distance is decreasing, the attractive dipole-
dipole interaction and the fine structure splitting are com-
parable in magnitude (x ' 0), and we can write:

V (0−g (np 2P3/2)) ' E(np 2P3/2) + (
√

2− 1)
C3

R3
(5.8)

leading to a repulsive R−3 branch. A minimum in the po-
tential is generated at a distance which decreases rapidly
from light to heavy atoms [52].

When the R−6 and R−8 terms of equations (5.2, 5.3)
terms are considered, as the C6 and C8 coefficients are
positive, they introduce an attractive contribution which
tends to compensate the repulsive R−3 behaviour. For
Na2 and K2, the minimum occurs at very large distances
(∼ 72a0 and ∼ 52a0 respectively [52]) where the R−6 and
R−8 terms can safely be neglected, so that the picture
of a pure long range R−3 potential well is indeed valid.
In the case of heavier alkalis, due to the large value of
the fine structure splitting, the minimum occurs in a re-
gion where the R−6 and R−8 terms should be introduced.
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Fig. 8. (a) Long range well in the 0−g potential curve for the
various alkali dimers, computed from multipolar expansion in-
cluding R−3, R−6 and R−8 terms. For Rb2 and Cs2, the curve
obtained by including only the R−3 term (closed circles) is dif-
fering markedly from the previous one, while no difference is
visible for Na2 and K2 at the scale of the figure. (b) Details
of the hump in the potential curve for the cesium dimer, from
ab-initio calculations (dot-dashed line), or asymptotic calcula-
tions: including only theR−3 term (full line with closed circles);
including R−3, R−6 and R−8 terms (full line); including also
the asymptotic exchange energy (dashed line). The −C3/R3

potential is also indicated for illustration (dotted line).

This is manifested in Figure 8a, where we have used the
long-range coefficients of Marinescu and Dalgarno [29]. In
the case of cesium, the repulsive branch is located at an
internuclear distances small enough to observe, when R
decreases, a compensation of the R−3 repulsive term by
the attractive R−6 and R−8 terms, yielding a qualitative
explanation for the presence of a hump at R ≈ 15a0. We
see in Figure 8b that once these terms are introduced in
the expansion the hump becomes close to the ab initio
estimation. In the case of rubidium, this simple model is
indicating a huge barrier instead of a intermediate hump
as is manifested in Figure 8a.

But, when we introduce a perturbative exchange cor-
rection [30] in the present model for Cs2, the maximum
of the hump is found above the asymptote and no longer
below: however, the huge value of the exchange correc-
tion shows that a perturbative treatment is not justified,
so that asymptotic calculations cannot be used for an ac-
curate estimation of the barrier height between the two
wells.

Therefore, asymptotic calculations predict a double-
well structure of the 0−g (6s 2S1/2 + 6p 2P3/2) potential
curve of Cs2, which is unique among the alkali dimers.
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Inset (a): blow up of the matching region of the ab initio 3Πg

curve (full line) with the asymptotic curve (broken line). Inset
(b): idem for the 3Σ+

g curve.

They also show that the height of the barrier is a very
sensitive test for molecular potential calculations and es-
timation of exchange terms. We shall now compare with
quantum chemistry results.

5.2 Computation of molecular potential curves

Quantum chemistry calculations, using pseudopotential
techniques, have succeeded in obtaining an accuracy of
a few tens of cm−1 for the Cs2 potential curves. Poten-
tial curves in the Hund’s case (a) representation are avail-
able up to 20a0 in the recent calculations by Foucrault
et al. [54], and up to 28a0 in those of Spiess and Meyer
[55,56], with equivalent accuracy in their common range
of internuclear distances. Because of their larger exten-
sion, we have considered the latter data for the poten-
tials VΣ(R) and VΠ(R) corresponding to the (1)3Σ+

g and

(1)3Πg states. Then we have diagonalized the effective
Hamiltonian matrix Hso(R) of equation (5.4), where the
atomic spin-orbit coupling parameter A is chosen accord-
ing to 3A/2 ≡ ∆Efs = 554.11 cm−1. This should be a
reasonable assumption for the range of internuclear dis-
tances spanned by the 0−g external well.

At distances R < 28a0, we tried to match the ab ini-
tio results of Spiess and Meyer [55,56] for the potential
curves VΣ(R) and VΠ(R), with the asymptotic curves
computed using the C3, C6 and C8 long-range coefficients
of Marinescu and Dalgarno [29] and including the con-
tribution of the asymptotic exchange energy as calcu-
lated in [30]. The (1)3Σ+

g data sets are nicely matched
at 22a0 (inset (b) in Fig. 9). In contrast, the ab ini-
tio determination and the asymptotic determination are
providing two parallel (1)3Πg curves between 22a0 and
28a0, separated each other by about 10 cm−1 (inset (a)
in Fig. 9). It is hard to say if such a difference may be

attributed to some inaccuracy in the quantum chemistry
calculations, or in the (non-relativistic) asymptotic calcu-
lations. This matching takes place right in the range of
the minimum in the 0−g long-range well, which is expected
around 23.4a0 (see Sect. 4.1). To avoid any discontinu-
ity in the curves, we used the effective potential data for
R ≤ 18a0, and the asymptotic data beyond 28a0: then a
cubic spline procedure ensures a smooth matching within
the 18a0 < R < 28a0 zone.

5.3 The 0�g external well

The 0−g (6s 2S1/2 + 6p 2P3/2) resulting from the diagonal-
ization of Hso(R) is displayed in Figure 7, together with
the RKR curve. It is compared with the asymptotic cal-
culations in Figure 8b. The double well structure of the
state is now clearly established, with the top of the bar-
rier located at 15.2a0 and slightly below the dissociation
limit (5.3 cm−1). The agreement with the RKR curve is
found good for the external well, both for the position
of the minimum (23.7a0 = 12.53 Å), and the well depth
(78.2 cm−1). This suggests that the assumed matching
for VΠ(R) is reasonable. The logarithmic derivative values
of the energy terms (1/G(v))(dG(v)/dv), are close to the
RKR ones (Fig. 10a): it confirms that the overall shape of
the potential, governing the splitting between the vibra-
tional levels, is very similar in both methods. The good
agreement with results of asymptotic calculations neglect-
ing the exchange term (see Fig. 8b) may be fortuitous.

5.4 The potential barrier

The existence of a hump in the potential curve is clearly
established both by asymptotic and by quantum chemistry
calculations. However, the fit performed in Section 4.3 is
not able to yield any information on the shape of the top
of the barrier, as it considers only the levels of the external
well.

The rotational constants computed from the ab initio
curve are compared to experiment in Figure 10b, show-
ing indeed a good agreement up to v = 74, as should be
expected from the two set of potential curves. In the lack
of experimental rotational constants B(v) for the upper
vibrational levels, the NDE theory yields an extrapolated
curve with a slowly decreasing behaviour, related to the
assumption of an exponential repulsive variation in the
left part of the potential curve. In contrast, the effect of
the barrier in the ab initio curve, located 5.3 cm−1 below
the dissociation limit is clearly reflected on the variation
of the computed B(v) around v = 95: the levels lying
just above the top of the barrier display a sudden increase
of their rotational constant, due to the large amplitude of
the wavefunction in this region. For larger v, the rotational
constant is again dominated by the long-range amplitude
of the wavefunction, and B(v) slowly decreases. However,
in the experimental spectrum, only the giant rotational
structure red-detuned by about 2 cm−1 may be attributed
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Fig. 10. The logarithmic derivative of the energy terms
(1/G(v))(dG(v)/dv) (a), and the rotational constants B(v) (b),
as a function of the vibrational quantum number v. Crosses:
experimental values. Closed circles: B(v) computed from the-
oretical potential of Section 5. In (a), the origin of energies is
taken at the dissociation limit. In (b), values of B(v) for lev-
els with unresolved rotational structures and calculated using
NDE theory (74 ≤ v ≤ 132) are indicated with a dashed line.

to a level with vibrational motion at distances typical of
the internal well. The isolated jump in the computedB(v)
at v = 70 (red-detuned by 10.36 cm−1) is due to a level of
the external well, populated at long range by photoassoci-
ation and strongly coupled by tunneling through the bar-
rier with a level of the internal well: this coupling gives rise
to a giant resonance with a rotational constant of about
180 MHz, not represented here.

This comparison suggests that the top of the barrier
should be located a few wavenumbers above the computed
one, in order to account for the observation of tunnel-
ing towards a vibrational level of the internal well with a
binding energy of 2 cm−1 only. Tunneling effect through
the barrier of the computed potential is also visible in
Figure 10a, where a perturbation in the level splitting
is expected at v = 70. Unfortunately, the experimental
observation of this effect should occur for small detun-
ings where the rotational constant cannot be determined.
In this range of internulear distance (smaller than 15a0),
neither the asymptotic exchange energy nor the ab ini-
tio calculations can be considered as more accurate than
a few cm−1. Complementary experimental data, for in-
stance provided by Fourier Transform laser spectroscopy,
are then needed to determine the shape of the internal well
and to predict the position and the width of the resonant
lines due to tunneling.

5.5 Long-range behavior of the potential

The NDE analysis has shown that it is not easy to find
a satisfying value for the long-range parameter C3. More-
over, beyond 50a0, the theoretical potential curve is not
exactly following the RKR curve. At 50a0, for both the
VΣ(R) and VΠ(R) curves, the C6/R

6 term accounts for
less than 1% of the energy, the C8/R

8 term for less
than 0.1%, the exchange term being negligible. Then the
theoretical curve is described with a good approxima-
tion by the expected inverse power law −Ceff3 /R3, with

Ceff3 =10.47 a.u. constant to better than 1%. But in the
same range, the CRKR3 (R) coefficient – deduced from the
RKR curve by multiplying the potential energy by R3 –
varies from 5.5 a.u. at 50a0 to 11.3 a.u. at the dissociation
limit, even if the C3 coefficient in the fit “F2” of the en-
ergies is kept constant at the theoretical value 10.47 a.u.
This is due to the combined effect of the large hyperfine
structure and of the particular double-well shape of the
0−g potential curve. A similar variation of the CRKR3 (R)

coefficient is found in the RKR analysis of the 0−g state in
Rb2 [41]. This may be due to the fact that in the upper
part of the fitted curve, the internal wall is extrapolated
by a repulsive exponential term whereas a power law term
seems more appropriate (see Sect. 5.1). For the Rb2(0−g )

pure long-range curve, a R−3 repulsive behavior of the
inner branch should be expected; for the Cs2(0−g ) curve,
the left part of its external well is also strongly influenced
by the attractive −C6/R

6 and −C8/R
8 terms, and by the

exchange term.

6 Conclusion

Following our recent work reporting the first photoassocia-
tion spectroscopy experiment in Cs2 [8], we have presented
the spectroscopy of the 0−g (6s 2S1/2 +6p 2P3/2) long-range
electronic state in Cs2. We have discussed how an accurate
potential can be fitted to the experimental data, represent-
ing 99.6% of the depth of potential well. The spectrum of
the 1u(6s 2S1/2 +6p 2P3/2) long-range Cs2 electronic state
has also been observed for the first time.

The photoassociation process in Cs2 is very interest-
ing because the 0−g rovibrational level may decay by spon-

taneous emission towards the lowest triplet state a3Σ+
u ,

leading to the formation of translationally cold molecules.
We have also demonstrated the possibility to create cold
molecules in their singlet ground state X1Σ+

g by photoas-

sociation of the 1u (6s 2S1/2 + 6p 2P3/2) long-range state.
These results are promising for future developments in the
field of cold molecules. The mechanism for the creation of
long-lived molecules is attributed to spontaneous emission
at a Condon point located at intermediate internuclear
distances. In the case of the 0−g excitation, this Condon
point is related to a double well structure in the poten-
tial curve. Moreover, a precise knowledge of the position
of the classical outer turning point associated to the ex-
cited ro-vibrational levels is crucial for the determination
of the scattering length. These considerations have been
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an important motivation for the present determination of
an accurate 0−g potential.

In order to reach this objective, we first have reported
experimental results on a high resolution spectrum of the
Cs2 (0−g ) long-range electronic state. Vibrational levels of
the external well have been assigned from v = 0 up to v =
132, i.e.∼ 0.3 cm−1 below the dissociation limit 6s 2S1/2+

6p 2P3/2. The rotational structure up to J = 8 is well
resolved for levels below v = 74. Moreover, a vibrational
series has been assigned to the 1u electronic state. Finally,
three isolated structures have been observed: two of them
exhibit a huge rotational constant, probably associated
with vibrational levels of the 0−g inner well.

The RKR potential energy curve has been constructed
from the 0−g vibrational and rotational observed data up
to v = 74. Accurate determination of the inner and outer
turning points of the classical vibrational motion have
been reported, with a 1% accuracy. As the rotational
structure is not resolved beyond v = 74 in the experi-
ment, the rotational constants were extrapolated using the
NDE theory of Le Roy and co-workers. The NDE fitting
of the energies cannot provide a converged value for the
C3 asymptotic parameter which varies by±10% according
to the performed fit. The long-range behavior of the RKR
potential differs from the expected −C3/R

3 asymptotic
law, preventing a reliable determination of the radiative
lifetime of the 6p 2P3/2 atomic level, in contrast already
performed for Na2 and K2 [9,12]. The RKR curve is prob-
ably less precise above the v = 74 level (or outside the
[16a0, 65a0] range of internuclear distances) as no exper-
imental rotational constants are measured. In the fitting
procedure, we have constrained the evolution of the inner
classical turning point for v > 50, by assuming an expo-
nential law for the repulsive branch of the potential. A
better adapted variation of the repulsive branch could be
introduced in the fitting procedure, and could lead to a
shift of the outer classical turning point possibly as large
as 1 Å for the highest vibrational levels.

The existence of a barrier can be qualitatively pre-
dicted at distances R ∼ 15a0 from asymptotic calcula-
tions, and we have shown that the inner branch of the
external well has a smooth repulsive behavior dominated
by a R−3 term. We have also discussed the reliability
of a potential curve determined from ab initio calcula-
tions matched around R ∼ 25a0 with asymptotic cal-
culations at large distances: there is a good agreement
(within 0.5 cm−1) for the prediction of the minimum and
the depth of the outer well. The experimental results pro-
vide a test for the ab initio calculations in the region of the
well and confirm the accuracy of the theoretical long-range
calculations. However, at smaller distances (R ≤ 15a0),
very few experimental data are presently available to pre-
cise the exact position and the shape of the hump. The
ab initio calculations predict a barrier 5.3 cm−1 below the
dissociation limit. On the contrary, the observation of a
giant structure attributed to tunneling effect through the
barrier seems to indicate that the maximum of the hump
is located closer to or above the dissociation limit.

Due to the importance of the long-range behavior of
the potential for the determination of the scattering length
and atomic lifetimes, and of the barrier for the production
of translationally cold molecules, further work should ad-
dress these issues.

Informations are still lacking concerning the inner well
and the barrier between the two wells. More data from
photoassociation experiments would hardly offer possibil-
ities for further investigations of the 0−g state in this region
because near the dissociation limit, the experimental res-
olution is limited by the hyperfine structure leading to a
quasi-continuum of states. It will be too difficult to get
an experimental answer about the evolution of the inner
classical turning point by this way. Moreover, the present
fitting procedure is no longer appropriate as the energy
of the highest levels in molecular potentials should not be
described through the usual JWKB quantization formula
[57,58]. Direct spectroscopic determination of the inner
well is therefore necessary and could be obtained for in-
stance by Fourier transform spectroscopy.
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